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Solute transport in porous formations is governed by the large-scale heterogeneity 
of hydraulic conductivity. The two typical lengthscales are the local one (of the order 
of metres) and the regional one (of the order of kilometres). The formation is modelled 
as a random fixed structure, to reflect the uncertainty of the space distribution of 
conductivity, which has a lognormal probability distribution function. A first-order 
perturbation approximation, valid for small log-conductivity variance, is used in 
order to derive closed-form expressions of the Eulerian velocity covariances for 
uniform average flow. The Concentration expectation value is determined by using 
a similar approximation, and it satisfies a diffusion equation with time-dependent 
apparent dispersion coefficients. The longitudinal coefficients tend to constant values 
in both two- and three-dimensional flows only after the solute body has travelled a 
few tens of conductivity integral scales. This may be an exceedingly large distance 
in many applications for which the transient stage prevails. Comparison of theoretical 
results with recent field experimental data is quite satisfactory. 

The variance of the space-averaged concentration over a volume V may be quite 
large unless the lengthscale of the initial solute body or of V is large compared with 
the conductivity integral scale. This condition is bound to be obeyed for transport 
at the local scale, in which case the concentration may be assumed to  satisfy the 
ergodic hypothesis. This is not generally the case a t  the regional scale, and the solute 
concentration is subjected to large uncertainty. The usefulness of the prediction of 
the concentration expectation value is then quite limited and the dispersion 
coefficients become meaningless. 

In the second part of the study, the influence of knowledge of the conductivity and 
head at  a set of points upon transport is examined. The statistical moments of the 
velocity and concentration fields are computed for a subensemble of formations and 
for conditional probability distribution functions of conductivity and head, with 
measured values kept fixed a t  the set of measurement points. For conditional stat- 
istics the velocity is not stationary, and its mean and variance vary throughout the 
space, even if its unconditional mean and variance are constant. The main aim of 
the analysis is to examine the reduction of concentration coefficient of variation, i.e. 
of its uncertainty, by conditioning. It is shown that measurements of transmissivity 
on a grid of points can be effective in reducing concentration variance, provided that 
the distance between the points is smaller than two conductivity integral scales. Head 
conditioning has a lesser effect upon variance reduction. 
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PART 1. STATISTICALLY HOMOGENEOUS VELOCITY FIELDS 

1. Introduction 
We consider here the steady flow of a fluid that carries an inert and neutral solute 

through a porous medium. Within the usual macroscopic approach, the solute 
concentration (defined as mass of solute per volume of fluid) satisfies the dispersion 
equation with the effective molecular-diffusion coefficient supplemented by the 
pore-scale dispersion tensor. The latter represents the effect of convection through 
the porous structure, and it has been the object of thorough laboratory and 
theoretical investigations in the past (for a comprehensive review see e.g. Fried & 
Combarnous 1971). For a uniform macroscopic flow and sufficiently large PBclet 
number the theory shows that the dispersion coefficients are proportional to the 
velocity, the proportionality factor being a property of the medium known as the 
dispersivity. The longitudinal dispersivity is of the order of the pore scale, whereas 
the lateral one is smaller by one order of magnitude. In  a typical laboratory test, 
one-dimensional flow is created in a homogeneous porous column and solute a t  
constant concentration is introduced at the column entrance. By measuring the 
concentration as a function of time in the effluent and matching it with the standard 
solution of the diffusion equation, one can determine the longitudinal dispersion 
coefficient and subsequently the dispersivity . 

In the present study we are interested in the problem of solute transport through 
large porous formations, as encountered in hydrological applications. The traditional 
approach assumed that in this case the concentration obeys the same dispersion 
equation, with appropriate dispersivity values. 

Field tests, though complicated and costly, have been performed in the past in order 
to determine the dispersivity a t  the formation scale (a summary of such tests as 
reported in the literature is given by Lallemend-BarrBs & Peaudecerf (1978) and a 
recent field experiment is discussed in $4 of the present paper). In  a typical test, water 
a t  a predetermined concentration is injected into a Bowing aquifer with the aid of 
a well, and the concentration is measured subsequently a t  a few downstream 
observation wells. Again, by matching the observed concentration as a function of 
time with the solution of the dispersion equation, values of dispersivity are found 
by best-fitting. A first important finding of the field experiments is that dispersivity 
values are generally larger than laboratory ones by a few orders of magnitude, making 
the latter of little value in applications. For this reason the field process has been 
also called ' megadispersion ', in contrast with pore-scale dispersion. This discrepancy 
has been attributed to heterogeneity of the larger scales prevailing in natural 
formations, but only recently has the effect of heterogeneity been studied in a 
systematic, quantitative manner. A second, and disturbing, finding is that in a given 
formation the dispersivity varies with the distance from the solute input zone. 

These results have cast doubts on the validity of the dispersion equation of 
transport through porous formations and have motivated a closer scrutiny of the 
foundations of the theory. The basic idea was to consider the effect of large-scale 
heterogeneity, more precisely the spatial variability of the relevant formation 
properties (hydraulic conductivity, porosity), and its impact upon solute transport. 
It is only in the last few years that formation heterogeneity has been investigated 
systematically, and on this basis, quantitative models of the transport process have 
been also developed recently. 

The aim of the present study is to investigate in a systematic manner the 
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relationship between transport and spatial variability of the hydraulic conductivity 
K. In  the first part K is assumed to be a stationary random function and the 
average flow is assumed to be uniform. The equation satisfied by the concentration 
expectation value is derived along the lines of Taylor’s (1921) theory of diffusion by 
continuous movements. The procedure is illustrated for a particular autocorrelation 
K-function in $4 and results are subsequently compared with a recent field test. 
After a brief literature survey ($5), the calculation of the concentration variance and 
the validity of the ergodic hypothesis are discussed in $6. The main finding is that for 
transport a t  the regional scale the concentration variance may be quite large, and the 
ergodic hypothesis, which has been adopted in most previous studies, does not hold. 

The second part of the paper examines for the first time the influence of 
measurements of hydraulic conductivity and pressure head at a set of points upon 
the statistical moments of the concentration field. A systematic procedure to assess 
the impact of measurements upon uncertainty is developed by using conditional 
probability theory. This topic departs from the traditional approach of theory of 
diffusion by continuous movements and might be of interest for various applications 
in which transport is dominated by large-scale motions. 

2. Statistical characterization of the formation .structure 
We consider here flow through saturated porous formations of aquifers that have 

two typical dimensions : a vertical thickness of the order of tens to hundreds of metres 
and a horizontal extent of the order of kilometres. We therefore ignore heterogeneity 
a t  the pore scale and regard the fluid and the solute as continua. The hydraulic 
conductivity and porosity determined with the aid of cores or samples are regarded 
as point values. Whenever such measurements are carried out a t  different locations 
of a natural formation, it is found that the properties vary in an irregular manner 
in space, i.e. as a rule formations are heterogeneous. 

There are two different and distinct scales of heterogeneity. The local scale refers 
to changes throughout the depth of the aquifer and over horizontal distances of the 
same order. A sampling of the properties (hydraulic conductivity, porosity) at this 
scale can be carried out by extracting cores at different points and measuring their 
properties in the laboratory. Then i t  is found that the spatial correlation scale is of 
the order of metres or tens of metres. The structure is essentially three-dimensional, 
but horizontal layering often creates a pronounced anisotropy, with the scale of 
horizontal correlations much larger than the vertical one. In $4 we shall describe a 
field test in which this was apparently the case. 

In  contrast, in most hydrological applications we are interested in processes at the 
regional scale, which is of the order of the horizontal extent of the formation. This 
scale is much larger than the depth, and the formation properties, as well as flow 
variables, are averaged over the depth and regarded as functions only of two 
dimensions in the plane, in a similar way to the shallow-water approximation. Then, 
hydraulic conductivity is replaced by transmissivity, and the latter is determined as 
a rule by pumping tests. Obviously, the local heterogeneity is wiped out in such a 
process, and new correlation scales characterizing heterogeneity, of the order of 
hundreds to thousands of metres, are found out. 

To account for variability and uncertainty, the formation properties are regarded 
as spatial random functions. A survey of field data found in the literature for 
properties a t  the local scale has been presented by Freeze (1975). It has been found 
that hydraulic conductivity K has a lognormal probability density function. With 
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Y = In K ,  the variance u$ has been found to reach values as large as 13 in some 
formations, although most figures are more moderate. Fewer data are available with 
regard to the porosity n, and Freeze (1975) suggests that  i t  is linearly correlated to 
Y .  The correlation coefficient is such that c r i  = 1.12 x i.e. the porosity is 
much less variable than the hydraulic conductivity. 

Data about the regional-scale heterogeneity have been summarized by Delhomme 
(1979) for a few aquifers in France. Again, the lognormal distribution is found to 
represent realistically the p.d.f. of the transmissivity with variance values between 
0.7 and 5. Delhomme also mentions correlation scales in the horizontal plane in the 
range 1-20 km. Clifton & Neuman (1982) have analysed data obtained from 148 wells 
in the Avra Valley, the thickness of the aquifer being around 200 m and its horizontal 
extent of the order of tens of kilometres. The variance of the log-transmissivity was 
found to be around 0.5, whereas the correlation scale was of the order of 8 km. 

On the basis of this picture, we shall regard here a porous formation, a t  both local 
and regional scales, as a realization of an ensemble of formations of random structures. 
The randomness reflects the uncertainty of the values of the hydraulic conductivity 
or transmissivity in space. I n  line with the aforementioned field findings and various 
recent works on stochastic modelling of groundwater flow (for a brief review see e.g. 
Dagan 1982a), we shall assume that the logarithm of the hydraulic conductivity, a t  
the local scale, or of the transmissivity a t  the regional scale, has a normal un- 
conditional probability density function with mean why and a constant variance cr$. 
The values of Y = Y - m y  a t  N points x,, x,, ..., x N  have a multivariate normal 
distribution with a covariance matrix which can be derived from the unconditional 
autocovariance function C,(r) .  The latter is supposed to depend on the distance or 
the lag vector r between the two points. To simplify matters we shall also adopt in 
a few numerical applications the exponential autocorrelation, suggested in previous 
works, namely G, = v& exp ( - Irl/Zy), where 1, is the linear integral scale of Y .  Thus, 
in this simplest representation Y ( x )  is a two- or three-dimensional stationary and 
isotropic random function, determined entirely by the two numbers u& and 1,. The 
ensemble mean m y  is generally a smooth and slowly varying function of x, which 
for simplicity can also be taken constant. 

We disregard here the uncertainty associated with measurement errors or other 
sources resulting in spatially uncorrelated fluctuations of Y ,  since they do not affect 
the transport process. Futhermore, we shall neglect the spatial variability of the 
porosity, which has a negligible effect upon the spread of the solute as compared with 
that of Y .  

3. Mathematical statement of the problem and first-order solution 
We consider here a porous formation within a domain 52 bounded by a surface Z. 

Let x be the Cartesian coordinate vector of a point, with x, y or x, y,  z its components 
in the two- or three-dimensional space respectively (we shall also use occasionally the 
suffix notation xl, x2 and xl, x,, x3). We consider here steady flows, such that the flow 
equations, in absence of recharge, are 

q = - K V Q , ,  V * q  = 0, (3.1) 

where @ = p l y  + z is the head, p is the pressure, y is the fluid specific weight, z is the 
elevation, and q is the specific discharge. As before, K is the hydraulic conductivity 
ky lp ,  where k is the permeability and y is the coefficient of dynamic viscosity of 
the fluid. I n  the case of two-dimensional flow at the regional scale, Q, and q are 
averaged over depth, whereas K is the ratio between transmissivity and depth. 
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Assuming for the sake of simplicity a uniform head gradient - J o n  the boundary 
Z and defining the head fluctuation q5 by q5 = @ + f i x ,  elimination of q from (3.1) 
yields 

1 V2$h+VY.V$J = P V Y  (X€Sz), 

$ J = o  ( X E Z ) ,  
(3.2) 

where Y = 1nK. 
The filtration velocity U is defined by U = q/n, where the effective porosity n is 

assumed to be constant. The solution of the transport problem requires the 
computation of the velocity covariances 

U j k ( X , Y )  = ( U j ( 4  Uk(Y)), u = U-( v>, (3.3) 

which have to  be evaluated in terms of the random function Y = In K .  The solution 
of the stochastic differential equation (3.2), giving the moments of @ as functions of 
those of Y, is one of the central problems of the theory of heterogeneous media (see 
e.g. Beran 1968). I n  particular, the covariances 

C y , ( X , Y ; ~ 2 , )  = < Y ’ ( X ) $ J d Y ) ) ,  C , ( x , y ; G )  = ( 4 ( 4 q 5 ( Y ) )  (3.4) 

depend in a nonlinear fashion upon the log-conductivity variance. We shall limit the 
present study to a linearized, first-order approximation of q5, such that 

CY, = a%c,,(x,y), c, = a2,c,(x9y). (3.5) 

This approximation simplifies considerably the computations and permits one to 
obtain closed-form solutions and to grasp the main features of the transport 
phenomenon. Furthermore, the results may be applied to porous formations for which 
a$ < 1, and they may also constitute the starting point of involved, numerical 
solutions. The functions cy, and c, in (3.5) can be obtained explicitly from the 
linearized version of (3.2) : 

I Vzq5 = J * V Y  (xESZ);  

q5=0 (X€C). 

To simplify notation the average flow is assumed to  be in the x-direction and 
variables are made dimensionless with respect to the integral scale I ,  as a lengthscale, 
JE, as head scale and (77) = J e x p  ( m y ) / n  as velocity scale. The solution of (3.6) is 
then given by 

where G(x, x’) is the Green function for Laplace’s equation. The covariances (3.5) are 

To simplify matters further we let the domain D expand to infinity, with G given 

1 1 1  
G(x, x’) = -- In (lx-x’l), G(x, x’) = -~ 

27K 47K Ix - x‘I (3.9) 

for the two- and three-dimensional spaces respectively. It is immediately seen that, 
for stationary Y ,  cy$ is a function of x - y  and is generally finite. I n  contrast, C, 

6 F L M  145 
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becomes unbounded in an infinite two-dimensional domain. Since only the head 
derivatives or increments are needed here, a convenient way to circumvent this 
difficulty is the one adopted in geostatistics (see e.g. Journel & Huijbregts 1978) to 
take advantage of the fact that  q5 has stationary increments. The variogram r4 
(known also as the semivariogram) is defined by 

~ & Y ;  = fl2YY$&Y) = ;([q5(4-&Y)lz) = ~ [ a ~ ( x ) + ~ ~ ( Y ) - 2 G 4 ( x , Y ) l ,  (3.10) 

and i t  tends to the following finite limit for an infinite domain: 

(3.11) 

It follows from the linearity of (3.7) that  the increments of q5 are normal since Y 
is normal. Therefore the joint probability density function of Y and the increment 
of q5 are completely defined with the aid of c y  and the associated cY4 and y4. 

By the same first-order approximation the velocity fluctuation is found from (3.1) 
as 

u ( x )  = Y’(x)  i - V @ ( x ) ,  (U) = i, (3.12) 

where i is a unit vector in the x-direction. Finally, by using (3.8), (3.11) and (3.12), 
the velocity covariances have the following first-order expressions : 

where Sj, is the Kronecker delta and j, k = 1, . . . , m with m = 2 (2-dimensional) and 
m = 3 (3-dimensional). 

Again, u is Gaussian and its p.d.f. is defined entirely by ujk, which in turn is given 
explicitly as a function of c y .  Equation (3.13) is the starting point for both parts of 
the present study. 

After these preparatory steps the problem we are going to address here is as follows. 
Solute at initial concentration co(x, t o )  is introduced in a porous formation within a 
volume &; what is the subsequent concentration distribution C(x , t )  as result of 
convection and dispersion Z 

Following the standard procedure of the’ theory of diffusion by continuous 
movements, we consider first an infinitesimal solute particle of mass dM = Codxo. 
The associated concentration field is given by 

dC(x,t;xo,t0) = dMS[x-Xt ( t ;x , , t , ) ]  (3.14) 

where 6 is the Dirac distribution. The vector X,  represents the displacement of the 
particle which started its motion a t  x = xo, t = to .  Xt is decomposed as 

Xt(t ; x,, t o )  = X(t ;  xo, t o )  + x,ct; t o ) .  (3.15) 

In  (3.15) X ,  represents the displacement associated with a ‘Brownian-motion ’ type 
of diffusion process. I n  the present context X ,  is associated with the pore-scale 
dispersion in the case of transport a t  the local scale. For transport a t  the regional 
scale, X ,  incorporates the effect of the local-scale heterogeneity. 

I n  contrast, X stems from convective transport by the fluid. For the steady flow 
of uniform average velocity defined before, Xis  related to the velocity field as follows: 

rt 
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It should be remembered that X is made dimensionless by division by I , ,  the 
hydraulic conductivity integral scale. Xis  a random function and its average is given 

(A‘) = xo+( t - to)& (3.17) 

i.e. the particle mean path is a straight line along the x-axis. The fluctuation 
X’(t; xo, to )  is given by the integral in (3.16), leading to a nonlinear integral equation 
for X’. A large body of literature has been devoted to deriving approximate 
relationships between the displacements and the Eulerian velocity covariances. We 
adopt here the simplest approach, which is consistent with the first-order approxim- 
ation of the velocity field, namely we replace X, in the integral of (3.17) by its average. 
Thus we obtain the fundamental relationship 

by 

r t  
(3.18) 

which gives X’ explicitly in terms of u. Retaining additional terms in X, in u would 
lead to expressions of higher order in a$ or in the product between a$ and the 
dispersion coefficient associated with the ‘ Brownian-motion ’ term. Conditions under 
which (3.18) might become a non-uniform approximation for large t will be discussed 
in 55. The convergence of an iterative procedure in which (3.18) is the first term has 
been discussed by Phythian (1975), with encouraging results for the case in which 
the velocity spectrum is sufficiently smooth. 

Since u is a normal random function, the same is true for X’. The p.d.f. of X can 
be written down as usual as 

Here and in the sequal m = 2 , 3  stands for the number of dimensions of the space 
of the flow domain, X,, is the displacement covariance tensor, lXj,l is its determinant 
and X;; is its inverse. It is easy to express X,, with the aid of the velocity covariance 
by using (3.18) as follows : 

x,,ct; xo, to) = (x;(t; xo, t o )  Xkct; xo, t o ) )  

r t  r t  
~ j ~ ( ~ o + t ’ - t o , ~ o , ~ o , ~ o + t ” - t o , ~ o ,  2,)dt‘dt”. (3.20) 

= J o J o  
The ‘Brownian-motion’ component x d  in (3.15) has a zero mean and a normal p.d.f. 

with the covariance tensor given by 

(3.21) 

D,, is the dimensionless pore-scale or local dispersion tensor and has the nature 
of a PBclet number. If the dispersion coefficients are written as the dispersivities times 
the average velocity, D,, becomes equal to the ratio between dispersivity and the 
integral scale l , ,  it  being assumed that this ratio is much smaller than unity. 
Furthermore, X, is uncorrelated with u,  so that we can write for the covariance 

Xtjk = X j k + 2 ( t - t O )  Ddjlc. (3.22) 

Obviously, X, is also normal, of mean (3.17) and covariance (3.22). We turn now 
to the calculation of the expectation value of the concentration dC (3.14). This is done 

of x, 

6-2 
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by multiplying dC by the p.d.f. of Xt and integrating over X,. It is immediately seen 
from (3.14) that we arrive at the classical result that 

(3.23) 

where f is the Gaussian function (3.19) in which xjk is replaced by Xtjk .  

a finite volume V,: 
This result can be extended immediately to a solute body introduced a t  to = 0 in 

<C(x, t ) )  = s, Cof(x,  t ;  xo) dxo, (3.24) 

and similarly, by integrating over to, for a plume. 

that (C(x, t ) )  satisfies the dispersion-type equation 
Another classical result, which can be arrived at by differentiation off (3.19), is 

with the coefficients D,, given by 

(3.25) 

(3.26) 

The general results presented so far, which are based on well-established concepts, 
are the starting point of our analysis of transport in porous formations in the sequel. 

4. An illustrative example and comparison with a field test 
To illustrate the approach we adopt the particular form of log-conductivity 

covariance mentioned in 9 2 and employed in a previous work (Dagan 1982 a) ,  namely 

C, = u$cy, cy(r)  = exp ( -  Irl). (4.1 1 
By substituting c, from (4.1) and G from (3.9) into (3.8) and (3.11) for two- 

dimensional flow, the following closed-form expressions are obtained after a few 
quadratures : 

(4.2) 
c,$(x,y) = cy$(r) = ~ [ ( l + r ) e C ' - l ] ,  r X  

r 

- Ei ( - r )  + In r + e-" - 1 + E , 1 I eC(r2+3r+3)-3 
r2 

14.3) 

where rx and ry  are the Cartesian components of r = x - y ,  r = 111 and E = 0.577 ... 
is the Euler constant. Substitution of cy+ from (4.2) and y$ from (4.3) into the 
expression for u in (3.13), followed by integration with xo = yo = 0 a t  to = 0 in (3.20), 
yields the following expressions for the displacement covariances : j !  

x,, = 0, (4.4) 

2t-3 lnt+;-3E+3 

lnt-;+E-Ei(-t)+3 

t (4.5) 
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Equations (4.5) and (4.6) have been obtained previously by a somewhat-different 
approach (Dagan 1982b), and they are represented graphically in figure 1 (a) .  As one 
would expect from Taylor’s (1921) theory, in the small-time limit we get in (4.5) and 
(4.6) 

X1,(t)+~f7$t2, Xz2(t)+&T2yt2 ( t + O ) .  (4.7) 

Thus the covariance tensor is anisotropic, its longitudinal component being 

The more interesting limit is that of large t .  Then we obtain in (4.5) and (4.6) 
initially three times larger than the lateral one. 

X,,(t) --f 4 ( 2 t  - 3 In t + z - 3E + . . . ), X,,(t) --f &&(ln t + E - $ + . . .) (t  + 00). (4.8) 

It is seen that the behaviour a t  large t is quite different from that a t  small t .  X,,(t) 
has the structure predicted by the Taylor theory, namely the leading term is 
proportional to t .  Rewriting X,, in terms of variables with dimensions gives, in (4.8), 
X l l ( t ) + 2 4  1, t .  In  contrast, X,, grows only logarithmically with time, the reason 
being that u2, (3.13) has a zero integral scale. In  figure 1 ( b )  we have represented the 
ratios Xll/2t and XZ2/2t as functions of time. The significance of these quantities when 
interpreting field tests will be discussed in the sequel. In a similar fashion we could 
derive the coefficients Dtjk of (3.15) by differentiation of (4.5) and (4.6). 

One of the most important conclusions that can be drawn from the inspection of 
figures 1 (a ,b)  is that D .  = idXjk/dt vary with time over a period which can be quite 
large. Thus D,, reaches its constant, asymptotic value only after a travel time equal 
to tens of conductivity integral scales over the average velocity. 

Similar computations can be carried out for the three-dimensional covariance 
tensor Xjk(t). The three components different from zero are now the longitudinal one 
X,,  and the two lateral ones X,,(t) = X,,(t). X,, and X,, are given by formulae similar 
to (4.5) and (4.6) respectively, the difference being that C, and G are now functions 
of the additional space variable z and an additional integration over z is carried out. 
The final result is now 

31”. 

1 1 4  4 4 1  
X2,( t )  = X3,(t) = 2 4  ---+-- -+-+- e- 

[3 t t3 (t3 t 2  t )  

The small- and large-time limits are given now by 

X,,(t) - f: 4 t 2 ,  X,,(t) +& a$ t2 ( t  +0),  

(4.9) 

(4.10) 

(4.11) 

(4.12) 

and it is seen that the lateral covariance5 are much smaller than the longitudinal one. 
X,,/&$ (4.9) and X,,/g$ (4.10) are represented in figure l (a) ,  whereas the ratios 
X1,/2a$t and X,,/2a$ t are represented in figure 1 (b ) .  It is seen that the lateral 
covariance (with dimensions) tends asymptotically to the constant value tcr$Z$. 

To illustrate the results further, we shall now analyse an elaborate field experiment 
carried out recently by Sudicky, Cherry & Frind (1980). The results here are taken 
from the summary of the data presented by Simmons (1982). The test was performed 
for natural flowing conditions in a landfill by injecting a chloride solute through five 
pipewells, which established an initial parallelepipedic solute body. The concentration 
distribution in space was monitored subsequent to the injection of the solute body 
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FIGURE 1. The displacement covariances as functions of time. (a )  ---, X,,/a'$, two-dimensional 
flow (4.5); -.-.-*- , Xll/u2y, three-dimensional flow (4.9) ; ---, Xzz/u2y, two-dimensional flow (4.6) ; 
- . . - . . - , X,,/a'$, three-dimensional flow (4.10). ( b )  The same as in ( a )  after division by 2t. Here 
and in the following figures, Xll; X , ,  are made dimensionless with respect to E 2 y ,  and t with respect 
to l Y / U .  
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by a battery of observation wells. The distance from the input zone was of the order 
of a few metres, i.e. the phenomenon was observed a t  the local scale. Unexpectedly, 
the tracer slug split into two halves that moved a t  different average velocities. Each 
half developed its own bell-shaped distribution and was employed separately in order 
to determine dispersion coefficients. We shall refer here to the results pertinent to 
the ‘fast zone’, those for the other half being similar. 

The interpretation of the measurements was carried out by assuming that the 
concentration obeys the convection-diffusion equation with constant velocity and 
dispersion coefficient. The first was determined from the motion of the centre of 
gravity of the solute body. With the initial dimensions of the slug of 
1.4 m x 2.25 m x 0.5 m, the dispersion coefficient a t  a certain location was determined 
by a best fit between the solution of the diffusion equation and measurements. The 
dispersivities were subsequently derived by dividing the dispersion coefficients by the 
velocity. It was found that dispersion in the vertical direction was exceedingly small 
and the tracer spread essentially in the horizontal plane. The experimental values 
of dispersivity as function of distance from the input zone are reproduced from 
Simmons (1982) in figure 2. The longitudinal and lateral pore-scale dispersivities were 
determined from the intercepts of the dispersivity curves a t  x = 0, where x is the 
longitudinal coordinate. The values are, in the notation of $ 3  and for dimensional 
variables, Ddll = 0.011 m and DdZ2 = 0.0033 m respectively. 

Inspection of figure 2 shows that both dispersivities grew with distance from the 
input zone, i.e. with travel time, contrary to the assmption underlying the 
interpretation of results. This discrepancy was attributed to larger-scale hetero- 
geneity of the porous formation. We shall try to analyse the experimental results by 
using the present developments. 

We shall assume a t  present that the ergodic hypothesis is satisfied, i.e. that  the 
space-averaged concentration along the measuring observation wells is equal to the 
concentration expectation value. This is a fundamental assumption which should not 
be taken for granted, but a thorough discussion of its applicability is deferred to $6 .  
The next assumption is that transport is two-dimensional in the horizontal plane. 
Finally, we presume that the other conditions underlying the analytical expressions 
of the displacement covariances X , ,  (4.5) and X,, (4.6) are met. 

The comparison between experiments and theory has been carried out as follows. 
The experimental concentration was assumed to  be Gaussian, as is the case for the 
theoretical one. The connection between the time-dependent covariances Xi, and the 
constant dispersivities measured from a space concentration distribution a t  a given 
time is quite simple: the latter are obtained from the former by division by twice 
the velocity times the travel time (see (3 .21)) .  The same result is approximately valid 
for measurement of time-dependent concentration a t  a fixed point. I n  other words, 
the curves representing Xjk( t ) /2 t  of figure l ( b )  are approximately those of the 
apparent dimensionless dispersivities in a common interpretation of field tests. Since 
everything is known except for the two parameters i ~ &  and l,, the variance and 
integral scale respectively of the log of the hydraulic conductivity, the two have been 
determined by a best fit of the theoretical curves of figure 1 (a )  for two-dimensional 
flow and the measured values. The results are shown in figure 2 after finding the values 
dj, = 0.19 and 1 ,  = 1.4 m. Of course, a better verification of the theory could be 
achieved by measuring these two parameters independently, but such data are 
difficult to obtain and unfortunately are not available. It is still encouraging to find 
out that in spite of the numerous simplifying assumptions, the theory is able to  
reproduce quite accurately the measured apparent dispersivities, and particularly the 
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FIQURE 2. Comparison between experimental points from the field test of Sudicky et al. (1980) 
(reproduced from Simmons 1982) and theoretical curves (4.5, 4.6 and figure l b )  with cr$ = 0.19, 
1, = 1.4 m. D is the apparent longitudinal (---) and lateral (----) dispersivity and L = Ut 
is the distance travelled by the solute body. 

relative magnitude of the two components, as well as their growth with time. I t  is 
hoped that further elaborate time-consuming and costly field experiments will 
become available for further validation and improvement of the theoretical analysis. 
At any rate, the values of a$ and 1, are of the order of magnitude implied by the 
approximations adopted in the preceding sections. 

5. Brief discussion of previous work 
The review of previous work on stochastic modelling of transport in porous 

formations has been deferred to this section to take advantage of the developments 
of the preceding sections. As a rule, the ergodic hypothesis has been adopted in the 
past and the computations have been limited to evaluating only the concentration 
expectation value. 

The pioneering work of Buyevich, Leonov & Safrai (1969) assumes that hetero- 
geneity is associated with the spatial variability of porosity, the permeability being a 
function of the latter. By adopting the linearized approximation and a spectral 
representation, these authors derived the spectral densities of the pressure, velocity 
and concentration fields. The results are quite involved because the Darcy law (3.1) 
has been replaced by a general momentum equation which contains various derivatives 
of the velocity field. In the final results on transport Buyevich et al. (1969) adopt a 
Gaussian isotropic porosity covariance function and derive the small- and large-time 
limits of the effective dispersion coefficents D,, (3.26). 

A similar approach has been employed by Gelhar & Axness (1983), who related 
transport to spatial variability of hydraulic conductivity. They have evaluated only 
the asymptotic, constant, values of the dispersion coefficients D,, for large time and 
for various types of isotropic and nonisotropic log-conductivity covariances. The 
authors retain in the analysis both first-order convective velocities and pore-scale 
dispersion. This is tantamount in the present context to replacing X, in (3.16) by 
(X) + X, rather than by (X) (3.17) only. In this respect their analysis is more general 
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than the present one, as D,, depend on terms of order r$ D,, which were neglected 
here. It is therefore instructive to  compare the present results with the complementary 
ones of Gelhar & Axness (1983). 

As expected, the values of the longitudinal component D,, = @X,,/dt for t + co 
obtained here by differentiating (4.5) and (4.9) are identical with the leading-order 
terms derived by Gelhar & Axness (1983, equations (3.3) and (3.7)) for the same 
correlation function (4.1). Thus their results are particular cases of those derived 
here. I n  contrast, they obtain finite limits for D,, = idX,,/dt for tea,  namely 
D,, = &a$ Ddll for 3-dimensional flow (their equation (3.6)) and D,, = 8 ~ 5  Ddll (their 
equation (3.7)) for 2-dimensional flow. These results may be used in order to delimit 
the range of validity of the time-dependent X,, (4.6, 4.10). It is seen that for 
two-dimensional flow the approximation (4.6), in which the interaction between 
heterogeneity and pore-scale dispersion is neglected, is valid for t < 4/Ddll, whereas 
for 3-dimensional flow X,, (4.10) is valid for t 4 +D&. Since Ddll, the ratio between 
pore-scale or local dispersivity and the integral scale I,, is much smaller than unity, 
the expressions derived here are uniform approximations for travel distances of 
many integral scales. It will be of interest, nevertheless, to derive uniformly valid 
time-dependent expressions for X,, along the lines of Gelhar & Axness’ (1983) 
approach. 

Mathkron & de Marsily (1980) have investigated transport in a formation made 
up from parallel layers set a t  random, such that the hydraulic conductivity is a 
function of one space coordinate only, normal to  the layer planes. I n  contrast with 
the previous works, they have been able to derive expressions for the dispersion 
coefficients for arbitrarily large covariances. The main result was that for flow parallel 
to the layers the longitudinal dispersion coefficient does not tend to a finite limit for 
t + co . A similar case of stratified aquifer, but of finite thickness, has been investigated 
by Gelhar, Gutjahr & Naff (1979). 

Finally, Smith & Schwartz (1980) have carried out a numerical simulation of 
two-dimensional flow and of transport by using a Monte Carlo procedure. Their 
results, which are not limited by small variances and do not imply ergodicity, show 
clearly that the expectation concentration does not generally satisfy a dispersion 
equation. Because of numerical complexity, however, their study has been confined 
to some particular cases solely. 

6. The concentration variance and the ergodic hypothesis 
We consider now the concentration field associated with a solute body inserted at  

t = 0 into a volume 5. Furthermore, the concentration is space-averaged over a fixed 
volume V surrounding a point of coordinate x. To simplify matters the initial 
concentration is assumed to be constant i.e. C(x,, 0) = C,. Then, by using (3.14), we 
can write the concentration as 

We define now the joint p.d.f. of two displacements X,(t, a )  and q(t, b)  of two 
particles originating at t = 0 from x, = a and x, = b respectively. The displacements 
aredecomposedasin(3.15),i.e.Xt = X+X,and Yt = Y+ Y,.The ‘Rrownian-motion’ 
components are uncorrelated if a + b, which is an approximation reflecting the 
smallness of their correlation scale as compared with that of the convective 
components Xand Y. For average uniform flow, the latter are related to the Eulerian 
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steady velocity field by (3.16) with x, replaced by a and b respectively and with to = 0. 
Finally, under the same conditions of a first-order approximation of the velocity and 
Concentration fields, the fluctuations X‘ and Y’ are given by (3.18) with X, = a, b. 
Hence, owing to the normality of u,  X and Yare also normal and their joint p.d.f. 
f(X, Y; t ,  a, b)  is given by an expression similar to (3.19) with Xj, replaced by the 
covariance tensor Z x y , j , ,  which is symmetrical and has 36 or 16 components in the 
three- or two-dimensional cases respectively. 

The covariance tensor is related to  the velocity covariance by relationships similar 
to (3.20) as follows: 

r t  r t  

Z X Y , j k  = Jb J~~jk“,+t’,a,,a,,b,+t’,b,,b,)dt’dt”. (6.2) 

For the case of statistical homogeneity considered in this part, the mixed 
components of the covariance tensor are functions only of the initial space lag a - b 
between the two particles, i.e. 

r t  r t  

Z X Y , ~ ~ ( ~ ,  a - b) = uik(al - b, + t’ - t ” ,  a, - b,, u3 - b3)  dt’ dt” (X * Y), (6.3) Ji Ji 
whereas those related to the same particle are given by 

Finally, the covariance of the total displacements is given by 

1 Ztik = Z X Y , j k  w* Y), 

z,, = xj, + 20,, t  ( X  = Y). 

We proceed now with the main topic of this section, namely the computation of 
the concentration variance (we could, of course, evaluate other moments as well). This 
is achieved immediately by ensemble-averaging c“ (6.1) and subtracting (c)z from 
it. The important result is 

+ ( x , t )  =%! Ift(X, Y,t;a,b)-f,(X,t;a)f,(Yt;b)]dXdYdadb, (6.6) 
V2 v, v, v v 

where f , (X,  Y,  t ;  a, b) is the normal distribution of covariance Z,,, whereas f , (X ,  t )  
has covariance Xtj, (3.22) and the averages of X, and Y, are given by (3.17), i.e. 
(X,) = a+ti  and ( Y , )  = b+ti .  

It is seen that the concentration variance depends in the displacement covariance 
(6.3). Once the latter is known v& can be found by a series of quadratures over the 
normal distribution. Before proceeding with the derivation of Z X Y , j k  we shall analyse 
first in a qualitative manner the dependence of +upon the extent of V, or V .  

Since the velocity components become uncorrelated for sufficiently large initial lag 
a- b, the same will be shown to be true for the corresponding displacements, and 
Z x y , j ,  tend to zero €or fixed t and sufficiently large h = (a-bl. For such lags X, and 

become statistically independent andf,(X, Y,  t ;  a, b) + ft(X, t ;  a)f,( Y,  t ;  b). Then by 
(6.6) the concentration coefficient of variation tends to zero if the lengthscales of V, 
or V are sufficiently large compared with the correlation scale I,. Assuming that the 
same is true for the higher-order statistical moments of C, the actual concentration 
is close to its expectation value and the requirements of the ergodic hypothesis are 
fulfilled. It should be emphasized that, unlike turbulent or other flows fluctuating 
in time, in the case of steady flow through a medium of fixed random structure, 
continuous insertion of the solute over an extended period of time has no effect upon 
the reduction of variance. I n  simple words, parcels of tagged fluid injected a t  different 
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times in the formation will follow the same path, and ergodicity can be achieved either 
if V, or V are sufficiently large, or after an exceedingly large travel time for which 
the dispersive effect of the ‘Brownian-motion ’ component ensures spreading over a 
large volume. 

The salient question is whether in typical applications of solute transport in porous 
formations the above ergodicity requirements are satisfied. The point of view 
expressed already in a previous work (Dagan 19823) is that in the case of spreading 
at the local scale the answer is positive, whereas for transport a t  regional scale i t  is 
generally negative. Indeed, in most cases of field experiments at the local scale, solute 
is introduced either through an injecting well or a repository. I n  any case the 
lengthscale of the initial solute body is relatively large compared with the hetero- 
geneity correlation scale, and this was precisely the case in the example analysed in 
$4. The concentration is generally measured with the aid of piezometers, which 
achieve a space averaging over a vertical scale which might be comparable to I , .  
Although the computational tools needed in order to check this assertion quantita- 
tively are at hand, we shall take for granted here that in most circumstances i t  is 
satisfied. 

The situation is generally different for transport a t  regional scale. I n  this case, one 
is interested in the fate of the solute body at distances of the order of kilometres from 
the input zone, and the transmissivity correlation scale in the plane is of the order 
of hundreds or thousands of metres (see $2). Only in the case of distributed sources 
over large areas, of the order of kilometres, is one entitled to assume ergodicity. In  
many conceivable cases of local sources, the initial lengthscale is small compared with 
the regional scale, and the concentration variance can be quite large. The smoothing 
effect of space averaging is also of limited scope, since again one is generally interested 
in the fate of solutes over zones of small extent. Most of the developments in the sequel 
are dedicated therefore to two-dimensional solute transport under conditions of 
possibly large concentration coefficient of variation. 

At this point we return to the evaluation of the covariance tensor zxy,jk (6.3) in 
two dimensions for the particular c ,  (4.1). This could be done in a closed analytical 
form by using the functions cy+ (4.2) and y+ (4.3). 

The cross-component Zxy, 12 is equal to zero for both h = 0 and h+ 00, and is 
negligible. Hence the tensor Z x y , j k  (i, k = 1,2) is symmetrical and has zero compo- 
nents for j + k, and the surviving components are Zxx+ 11 = Z,,, = X,,(t) (4.5), 

We have represented in figure 3 the dependence of Z x y , j k  upon t for a few values 
of the initial lags h, and h,. Examination of figure 3 shows that the covariance of 
longitudinal displacements drops from X,, to zero as the lateral lag h, increases from 
0 to 3, whereas that of the lateral displacements is reduced to half of X, ,  under the 
same conditions. I n  contrast, the longitudinal initial lag h, has a small influence 
upon the covariances, i.e. the displacements of two particles lying on a line parallel to 
the mean flow remain correlated for large separations. 

We can conclude from the results of figure 3 that, for an input zone extending a 
few correlation scales I ,  across the direction of the mean flow, the concentration 
coefficient of variation becomes small and the expectation value is close to the space 
average, the latter being taken over a volume which might be small a t  the 
transmissivity correlation scale. This conclusion is valid for the dimensionless time 
interval of say t < 30. Different conclusions could be reached for very large t when 
the local scale dispersivity ensures spreading over a large volume, but they are of 
little interest for applications related to regional scale. 

In  contrast, for an input zone V, of transversal dimension smaller than say h, = 0.2, 

z x x ,  22 = ZYY, 22 = X2&) (44, Zx,, 11 = Z Y X ,  22 and Z X Y ,  22 = Z Y X ,  22 (6.3). 
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FIGURE 3. The two-particle displacement covariances as functions of time for two-dimensional 
flow for various initial distances h(h,, hy )  between particles. 

the covariances Zxu, l l  and Z x y , 2 2  are close to X,, and X,, respectively, and the 
coefficient of variation may be quite large. Indeed, the two particles covariances (6.3) 
are approximately equal to 

(6.7) 

where we have assumed that a-b  is sufficiently small to  warrant its neglect in 
Zxu,ij, but sufficiently large to permit one to discard the ‘Brownian-motion’ 
component when u + b. Under these conditions of small V, and V at scale I, i t  can 
be shown that for dimensionless time in the range of (az - b,)2/13d22 G t < D& the 
covariance and expectation value have the simple expressions 

! Ztj, = zxy,jik = Xj, (X + Y, j = k ) ,  

Ztjk = X,,, = Xjk+2Ddik t  (X E Y; j = k ) ,  

(6.8) 
+(X.t) = c; V ; ~ ~ ( x , X , t ; a , a ) - ~ ( x , t ; a ) l ,  

<Q = c, V,&> t ; 0 ) .  
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The computation of the coefficient of variation €,-can be carried out easily by using 
the multivariate normal distribution ft with covariance (6.7). Thus, a t  the ‘centre 
of gravity’ of <C), at x = a, + t ,  Y = a,, the coefficient of variation attains its minimal 
value, which is given by 

To grasp the order of magnitude of e c  let us take t = 10, X,, = 13 (figure la ) ,  
X,, = 1.4 (figure l a ) ,  Ddll = 0.1 and Ddzz = 0.01. For these values we obtain in (6.9) 
EC = 3.1. This is a large value, which implies that the actual concentration in a given 
realization may differ considerably from its expectation value, and the concentration 
is subjected to a large degree of uncertainty. 

7. Summary of Part 1 
Summarizing the main results of this part, we suggest the following picture for 

solute transport in heterogeneous formations. (i) For input zones V, and space 
averaging volumes V larger than the log-conductivity integral scale 1, the transport 
a t  local scale can be described by the dispersion-type equation (3.25), obeyed by the 
concentration expectation value. The dispersion coefficients depend on the travel 
time, as illustrated in figure 1 for an exponential log-conductivity autocovariance. 
Only after a travel distance of tens of integral scales do the dispersivities tend to the 
asymptotic constant limits derived approximately here or by Gelhar & Axness (1983) 
for small &. (ii) I n  the case of transport a t  regional scale and for input zones and 
averaging areas much smaller than the log-transmissivity scale, as is the case in 
most applications of ‘point sources’, the concentration is subjected to a large degree 
of uncertainty. The computation of the concentration expectation value is of little 
use and the coefficients appearing in the right-hand side of (3.25) cannot be 
interpreted as effective dispersion coefficients, unless a considerable travel time has 
elapsed. We can picture a solute plume in a given realization as diffusing slowly owing 
to local scale dispersion and winding like a meandering stream because of large-scale 
regional heterogeneity. In  the set of various possible realizations underlying the 
calculation of the concentration statistical moments, the location of the plume may 
differ considerably from the actual one, which is precisely reflected by the large value 
of the concentration coefficient of variation. 

An obvious way to eliminate uncertainty is to regard the large-scale motion as 
deterministic. However, this requires detailed information about the spatial distri- 
bution of the conductivity a t  regional scale, and such information is generally available 
only a t  a few points of the formation. In  the second part of the study we show how 
uncertainty can be reduced by using such field measurements of formation and flow 
parameters. 

PART 2. INFLUENCE OF HEAD AND CONDUCTIVITY CONDITIONING 
UPON CONCENTRATION FIELD 

8. Effect of conditioning upon the transmissivity and head fields 

regional scale, although the approach outlined here is of general applicability. 
In the present part we shall deal exclusively with two-dimensional flow a t  the 



168 G. Dagan 

In  Part 1 we have assumed that the only information available on the formation 
random structure is the mean my and the covariance CY(r) of the log conductivity 
Y ,  which is multivariate normal. I n  practice these parameters are derived from field 
data, i.e. by measuring Y a t  a set of points xj (i = 1, . . . , M )  and carrying out statistical 
analysis, and in $2 we have mentioned a few published studies on particular 
formations. By making use of the mean and covariance only, we assume that Y is 
subjected to some degree of uncertainty at each point and we ignore the fact that, 
a t  the points of coordinates xi, Y is known deterministically, or within measurement 
errors. Here again i t  is worthwhile to emphasize the difference between a fixed random 
structure and a time-fluctuating field. I n  the first case, measurements that  were 
carried out once can be used at any instant to characterize the structure. 

The main aim of the present part of the study is to investigate the impact of 
measured formation and flow data upon the concentration field. The only known 
previous work on the subject is that  of Smith & Schwartz (1980), who have examined, 
by Monte Carlo numerical simulations, the influence of fixing the conductivity a t  a 
few points in particular cases of flow. Devary & Doctor (1982) have analysed a few 
covariance5 of flow variables as a preparatory step towards modelling of solute 
transport. 

We shall consider here two types of measurements, which differ in methodology 
and impact. The first one, already mentioned, is that  of transmissivity, i.e. of Y ,  which 
is generally carried out by pumping tests. Such a test provides data on the formation 
structure and can be used for modelling and prediction of flow under various 
boundary conditions, but is quite costly. The second one is measurement of head @ 
by using piezometers, which is much simpler, but provides data on the actual flow 
conditions only. 

Incorporation of data a t  fixed points in the statistics of a random function of spatial 
coordinates has been dealt with extensively in geostatistics (see e.g. Journel & 
Huijbregts 1978). One of the basic problems approached in geostatistics is that of 
stochastic interpolation, which is solved by the method of kriging. The latter uses 
a linear interpolator in order to  predict the conditioned expectation value and 
covariance on the basis of the unconditioned covariance. We shall follow here a 
different approach outlined in a previous work (Dagan 1982a), which leads to similar 
results and is based on elementary statistics. For the sake of completeness, we outline 
the procedure briefly here. 

Consider the log-conductivity fluctuation Y ( x )  = Y ( x )  - m y ,  which is supposed to 
be stationary and normal, and defined therefore by the covariance Cy(x ,  x’). Assume 
now that Y; = Y’(xj)  (j = 1 ,  ..., M )  and $k = q5(xk) ( k  = M +  1 ,  .. . , N )  are measured 
values of Y’ at M points and of the head fluctation q3 a t  N -  M points respectively. 
This information is taken into account by defining the conditional probability density 
function of Y’ on the subset of realizations in which Y; and $k are fixed and given. 
The derivation of the conditional binormal p.d.f. of Y’(x) and Y‘(x’) may be found 
in textbooks (e.g. Mood & Graybill 1963, $9.3). Thus the conditional expectation 
value m$(x)  and the conditional covariance CC,(x, x’) are given by 

M N 
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where the coefficients hj and pk are solutions of the linear system 

M N 

169 

c hj cy#(x j ,  X I )  + 
j - 1  k=M+1 

c p k  c#(xj> x k )  = cy#(x> xl) ( I  = H+ 1 > f * .  > ").) 

In these equations Cy+ and C ,  are unconditional covariances (see 3.4). In the 
present case the standard system (8.3) needs to be slightly generalized because the 
head variance u$ becomes unbounded for two-dimensional flow in an infinite domain 
($3).  This difficulty is easily circumvented by a procedure suggested in a previous 
work (Dagan 1982a) and in $3 ,  by substituting C4 = v$-r+ in (8.3) and taking the 
limit w$ + co . 

The resulting linear system which replaces (8.3) is now 

giving h j , p k  and A in terms of the unconditional variogram I'# (3.10) rather than C#. 
It is worthwhile to recall here a few properties of the conditional probability. (i) 

The bivariate normal p.d.f. of Y'(x)  and Y'(x')  is not stationary, even if their 
unconditional p.d.f. is stationary. Indeed, the expectation value (8.1) depends on x, 
whereas the covariance (8.2) depends on x and x' rather than on X-x'. (ii) The 
conditional variance ( ~ 2 , ) ~  = C"yx,x) is smaller or equal to the unconditional, 
constant variance. In particular, the variance is zero at the points of conductivity 
conditioning and tends to the unconditional variance far from them. (iii) The 
conditional covariance does not depend on the actual measured values, but only on 
the unconditional covariance and the coordinates of the measurement points. (iv) For 
the first-order approximations of the unconditional covariances (3.5), the conditional 
covariance is also proportional to u2y, whereas the coefficents hj ,pk  and A are O(1) 
and depend only on xj and x k .  

The conditional covariance C",(x, x') can be expressed with the aid of the same 
coefficients of (8.4) as 

Finally, by a similar procedure, the conditional mean and covariance of the head 
fluctuation are given by 

M N 
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with A;, and A‘ solutions of 

N 

k - M + l  
c ,;= 1. J 

If there is no head conditioning, C$(x, x’) in (8.7) becomes unbounded. Then the 
conditional variogram is given by 

M 

I-1 
q ( X ,  x’) = f$(X, x’) + c AJX) C$Y(X’ ,  Xj), (8.9) 

replacing (8.7). These relationships summarize the material needed in the present 
study. Recall that the unconditional C,, and r$ depend on C ,  and have been given 
explicitly in (4.2) and (4.3) for the particular exponential covariance (4.1). 

9. The influence of conditioning upon the velocity and concentration fields 
Since the concentration is closely related to the velocity mean and covariances, we 

shall derive first their expressions under conditioning. The starting point is (3.12) for 
the velocity components, which are rewritten in the two-dimensional case as 

84 (x) w(x) = --. 84 (4 U ( x )  = l -u(x) ,  u ( x )  = Y ( x ) - -  ax 9 a Y  
Equations (9.1) are assumed to be valid in both cases of conditional and uncon- 

ditional probabilities, consistent with the relationship (3.7) adopted for the head (s. 
Furthermore, we adopt the first-order approximations for Cy4 and I-‘$ (3.5,3.8), 
which in turn are determined in an explicit form by C,. Consequently, the coefficients 
of (8.4) and (8.8), as well as the conditional mean and covariances of Y and (s, are 
set. The velocity components in (9.1) are normal since they result from linear 
operations on Y and their joint p.d.f. is entirely characterized by the mean and 
covariance. Thus the conditional expectation value is obtained by averaging (9.1) as 
follows : 

where m$@) and m$(x) are given by (8.1) and (8.6) respectively. The spatial 
distribution of the conditional mean (9.2) depends ultimately on C, and on Y and 
4 measured values. 

Similarly, the covariances are given in a general form by (3.13). In the notation 
of (9.1) and for conditional probability we have 

and they do not depend on the measured values, but only on x j  and x k .  
The next step is the computation of the statistical moments of the particle 
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displacement X,, which is also normal. The conditional mean can be derived from 
the differential equat,ion defining the trajectory : 

where we take, for the sake of simplicity, to = 0, x, = 0. 

replacing 
of higher order. Then (9.5) is replaced by 

A first approximation of (9.5) is obtained by the same procedure as in $3  by 
in (9.5) by its average, the fluctuation X C  being assumed to  yield terms 

Equation (9.6) is a deterministic first-order differential system which in general 
can be integrated only numerically. The solution renders the streamlines of the 
steady average velocity field. A further simplification, consistent with the first- 
order perturbation approximation, is arrived a t  by replacing (P) in (9.6) by its 
unconditional mean, i.e. 

( F ( t ) )  = t i+  (uc(t’, 0)) dt’, 1: (9.7) 

leading to the mean trajectory in an explicit form. In  any case, the effect of condi- 
tioning manifests in the departure of the latter from its straight-line unconditional 
mean (3.17). Furthermore, mean trajectories originating at different points are no 
more parallel owing to the dependence of (uc )  upon the coordinates of the 
conditioning points. 

The displacement covariances are computed by the same type of approximation 
as (3.20), i.e. by replacing q by (P) in the Eulerian velocity covariances as follows: 

X;,(t) = j t j t$ , [ (P( t ’ ) ) ,  0 0  (F( t” ) ) ]  dt’dt”. (9.8) 

Since the average displacement (F) (9.6, 9.7) is not a simple function of t, 
generally the integration has to be performed numerically in (9.8). If (F) does not 
depart too much from the unconditional straight mean path (3.17), a simple 
approximation of the covariances X;,, which is consistent with the first-order solution, 
is obtained by replacing (P) by ( X )  = ti in t.he integrand of (9.8), i.e. 

Once x& is computed by integrating Uyk (9.8,9.9), the Gaussian p.d.f. of % is 
precisely (3.19) in which ( X )  and X,, are replaced by (P) (9.6 or 9.7) and 
X;,+2Dajkt (9.8 or 9.9) respectively. This completes the computation of the 
concentration expectation value for solute inserted a t  xo = 0, to = 0. The calculation 
of the concentration variance can be carried put along the lines of $6 with the aid 
of the probability density function of displacements of two particles. We have shown, 
however, that for a solute body whose initial extent is small compared with 1, and 
for a limited, but large, time interval, the concentration variance can be related to 
X,, by (6.8). This equation is valid for X;, as well, and we shall limit $310 and 11 
to illustrating the effect of conditioning upon X j k .  
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10. Illustration of results for conductivity conditioning 
We wish to illustrate the general approach by computing effectively the conditional 

covariance qk. Towards this goal we adopt the exponential covariance C, (4.1) and 
the associated first-order unconditional covariance Cy$ and variogram (4.2, 4.3). 

For the sake of simplicity we shall examine the influence of conductivity condition- 
ing at an isolated point x l ( x l , y l ) .  I n  the case of conductivity conditioning solely, 
pk = A = 0 in (8.4) and only the first M equations have to  be maintained. It is seen 
that for M = 1 we get 

whereas from (8.8) we have 

(10.1) 

(10.2) 

Since c y  (4.1) and cy4  (4.2) are given explicitly, so are the coefficients of (10.1) and 
(10.2). The mean mCy(x) (8.1) and m $ ( x )  (8.5) can be written as known functions of 
x ,  x ,  and Yi, and on this basis we can calculate the average displacement of a particle 
released a t  x0 = 0, to = 0 by (9.6) or (9.7). We are interested here mainly in evaluating 
the displacement covariances, which are based on the conditional covariances (8.2), 
(8.5) and (8.9): 

(10.3) I C%@, x ’ )  = 4 4 c y ( x ,  x ’ )  - c y ( x ,  x , )  c,(x’, X J l ,  

CCy& x ’ )  = 4 4 c , & ,  x ’ )  - c y ( x ,  x1) C$,(X’, x111, 

q x ,  x ’ )  = &[r& X ’ ) + C $ , ( X ,  x , )  c&’, XI)]. 

Substitution of (10.3) into the velocity covariances (9.3, 9.4) and subsequent 
integration in (9.9) with x = t’, y = 0, x’ = t”, y’ = 0 yields the displacement co- 
variances X&(t ) ,  which could be calculated in a closed analytical form for the selected 
C, (4.1). 

To grasp the effect of conductivity conditioning, we have represented in figure 
4 X,,(t) (4.5), as well as X:,( t )  (9.9) for conditioning a t  three different points on the 
x-axis, i.e. on the line that leads to the largest impact upon Xyl.  The selected 
coordinates of these points were y, = 0 and x, = 0,5,10. Furthermore, on the same 
figure the cumulative effect of the three points is also represented by neglecting the 
interaction between them. 

It is seen that conditioning of conductivity a t  an isolated point has a modest effect, 
and even the reduction of X,, due to an array, a t  a spacing equal to five times the 
conductivity integral scale, is no more than 50 yo. Since the concentration coefficient 
of variation for a small solute body (6.9) depends on X!, ,  the corresponding reduction 
due to conditioning is even smaller. It is therefore seen that conductivity conditioning 
can be used effectively as a mean to reduce the concentration uncertainty, but the 
measurements have to be carried out on a grid more dense than that of figure 4 in 
order to achieve significant effects. The asymptotic effect of conditioning a t  an 
isolated point is constant and the covariance reduction is of the order of 3.5 (figure 
4 for t + GO).  Thus, if we neglect the interaction between points, the distance between 
the measurement points in the array has to be roughly 1.5 conductivity integral scales 
in order to reduce the covariance to zero. This is of course not exactly true as the 
effectiveness of conditioning decreases because of the interaction between close 
measurement points, but it is fair to presume that significant reduction of X , ,  will 
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FIGURE 4. The unconditional X,, and conditional X,,  - X?,  displacement longitudinal covariances 
for two-dimensional flow. Conditioning by conductivity at a point of coordinate x1(zl, yl). -, 
(4.5); ---, (9.9) for z, = 0, y1 = 0;  -. .-, (9.9) for x1 = 5 ,  y, = 0; (9.9) for x1 = 10, y, = 0;  
_ _ _ -  , cumulative effect for the previous three. 

occur only if the distance is smaller than 21,. A complete computation can be carried 
out along the lines of $8, the only additional complication being the need to invert 
the matrix C,(xj, x k ) .  

Conditioning a t  points on the x-axis has not effect upon the lateral covariance X z 2 .  
We have considered instead conditioning at two points a t  same x1 = x 2 ,  and y1 = - yz. 
The maximum reduction is achieved for y1 = 2 ,  and we have represented in figure 
5 Xzz ( t )  (4.6), as well as X;,(t)  (9.9), for x1 = 5 and y1 = -yz = 2, this time the 
interaction between the two points being taken into account. It is seen that the effect 
upon covariance reduction is quite small. Introducing two more points a t  same x1 = 5 
and y3 = - ya = 1 improves the picture, but still the reduction is both localized and 
modest. Again, a grid with distances between pairs of measurement points smaller 
than two conductivity scales in the x-direction is needed in order to achieve a 
considerable reduction of the lateral covariance and subsequently of the concentration 
variance. 

Summarizing this section, it is seen that transmissivity conditioning has two main 
effects. First, the concentration expectation value is still Gaussian and satisfies the 
convection4ispersion equation, but the average convective velocity is no more 
constant and equal to unity. For a single particle the centroid of the mean 
concentration distribution will move in the space along a sinuous path, given by (9.6, 
9.7), which is influenced by the location of conductivity measurement points, as . . 4 1  
as by its actual values. Secondly, the concentration coefficient of variation is 
diminished by conditioning. The extreme conceivable case is the one in which the 
measurement points are so dense that the transport becomes deterministic and 
uncertainty disappears. It is one of the major features of conditional probability that 
a smooth transition is achieved from this extreme case to the one of unconditional 
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FIQIJRE 5.  The unconditional X, ,  and conditional X,, - Xg, displacement lateral covariances for 
two-dimensional flow. Conditioning by conductivity a t  two points of coordinates x1 = xz, y1 = - y,. 
--, (4.6); -.--.-, (9.9) for x1 = 5 ,  y1 = 2;  ----, (9.9) and conditioning a t  four points 
XI = x, = x3 = x4 = 5 ,  y1 = -y, = 2, y3 = -y4 = 1. 

transport. The examples of figures 4 and 5 give an indication of the covariance 
reduction in a few cases. The methodology applied here, however, permits one to 
investigate in a systematic manner the worth of measurements on grids of various 
densities in reducing uncertainty. The simple examples given here indicate that 
distances smaller than, say, two transmissivity integral scales are needed in order to 
reduce uncertainty significantly. These conclusions are valid for the time interval in 
which dispersion by local effect' has a limited effect, and this time may be quite large. 

The case of transport of an initially finite body or for a continuous plume is more 
complex and in general requires solution by numerical quadratures. 

11. The influence of head conditioning upon the concentration field 
Our last topic is the investigation of the effect of measurement of the head 4 a t  

a few points, the simplest case being that of two points, since i t  can be shown that 
head conditioning a t  an isolated point has no influence upon transport. The 
computations are quite similar to those of $10, and we shall address directly the 
question of reduction of the two-dimensional covariances XI, and X S 2 .  Under the same 
assumptions as in $9, we start now with (8.4) and (8.8) in which hj = hi = 0 and only 
the last N -  M equations are maintained with M = 0, N = 2.  

The first case to consider is of two points lying on the x-axis, i.e. on the mean 
trajectory. To simplify matters further and to assess the greatest impact of 
conditioning, we assume that the two points are close, i.e. at a distance that is small 
compared with the conductivity integral scale. This can be called a head doublet and 
i t  provides the magnitude of the longitudinal head gradient (the points should not 
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be too close to avoid large measurement errors). Taking the limit x1 - x2 + 0 and after 
a few manipulations we obtain 

lim r4(xl-x2,0) = & , ( ~ ~ - x ~ ) ~ ,  
S l - - s * + O  

(11 .1)  

For the exponential correlation (4.1) the two functions CY4 and y4 are given by 
(4.2) and (4.3) respectively, and XP, (1  1.2) can be calculated explicitly. This has been 
done for x1 = 5 and x1 = 10, and the results are represented in figure 6, together with 
the covariance reduction caused by a conductivity measurement point a t  the same 
locations. Inspection of figure 6 reveals that  the reduction of the longitudinal 
covariance by a head doublet is much smaller than that of a conductivity measurement 
and is localized. 

I n  a similar manner we have evaluated the effect upon the lateral covariance of 
two conditioning points a t  x1 = 5 and y1 = - yz to obtain 

The covariance reduction is represented in figure 7 for y1 = 2 and y1 = 0.5 
respectively. On the same figure the effect of transmissivity conditioning a t  x1 = 5, 
y1 = - yz = 2 has also been depicted. This time the two types of measurements have 
comparable magnitudes. 

Summarizing this section, it is seen that the impact of head measurements upon 
the displacement covariances, and henceforth upon concentration variance, is less 
than that of conductivity conditioning. Again, a systematic study can be carried out 
by comparing the effects of grids of measurement points of various densities, for 
transmissivity and heads separately or for a combination of both. 

12. Summary of Part 2 and conclusions 
I n  the second part of the study the measured values of the conductivity and head 

are taken into account directly and the statistical moments of the velocity and 
concentration fields are computed with the aid of the conditional probability 
distribution functions of the conductivity and head. Again, this is an option which 
exists in the case of fixed random structures and which distinguishes it from other 
cases in which the velocity field is time-fluctuating. The conditional probability allows 
for a continuous transition between two extreme cases. I n  the first one, when 
measurements are available on a dense grid of points a t  distance much smaller than 
I,, the ensemble average of the velocity varies in an intricate manner throughout 
the space, whereas the variance tends to zero, so that the field is practically 
deterministic and uncertainty disappears. At the other extreme we have the 
unconditional p.d.f. for which the average velocity is constant, but the variances and 
higher moments may be quite large. These concepts, which are quite common in 
geostatistics, have been illustrated separately for conductivity and head conditioning. 
It has been shown that conductivity measurements may reduce considerably the 
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FIGURE 6. Comparison between longitudinal covariance reduction X,,  - Xyl by conductivity 
conditioning a t  one point and by a head-doublet conditioning. --, (9.9), conductivity at x1 = 5, 
y1 = 0; ---- (10.6), conductivity a t  x1 = 10, y1 = 0; -.-.-, (11.2), head doublet a t  x1 = 5 ,  y1 = 0;  
- . .-. .- (11.2), head doublet at x1 = 10, y1 = 0. 

FIQURE 7. Comparison between lateral covariance reduction X,, - Xg2 by conductivity conditioning 
andheadconditioningattwopoints.---, (9.9),conductivityatx1 = xg = 5,y, = -yz = 2;-.---, 
(11.3), head a t  z1 = x, = 5, y1 = -y, = 2; -. .-- .-, (11.3) head a t  z1 = x2 = 5, y1 = -yz = 0.5. 
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uncertainty in the prediction of concentration, if measurement points belong to an 
array with distance between them smaller than, say, two conductivity integral scales. 
The head conditioning has been shown to have less impact upon concentration 
variance. 

It is suggested that a similar methodology can be employed for other problems of 
transport by random fluid motions in which the correlation scale of the velocity field 
is much larger than that of the solute body. 

I am indebted to G. K. Batchelor for his helpful comments. 
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